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Euclid

Given a line in a plane, how many parallel lines 

can be drawn through a point not on the line?

For over 20 centuries, the answer was óoneô



Relax one axiom

ÅNon-Euclidean geometries say the answer is 

either zero or many

ÅControversial, but eventually accepted

ÅRicher mathematics and broader applications

ïUsed by Einstein in general relativity



Current tumult in uncertainty theory

ÅRelaxing one axiom of decision theory yields a 

notion of ñnon-Laplacianò uncertainty

ÅThis uncertainty cannot be characterized by a 

single probability distribution

ÅWill eventually be embraced as essential

That we can also compare any two gambles



Epistemic uncertainty

ÅArises from incomplete knowledge

ÅIncertitude arises from

ïlimited sample size

ïmensurational limits (measurement error)

ïuse of surrogate data

ÅReducible with empirical effort



Aleatory uncertainty

ÅArises from natural stochasticity

ÅVariability arises from

ïspatial variation

ïtemporal fluctuations

ïmanufacturing or individual differences

ÅNot reducible by empirical effort



Model uncertainty

ÅDoubt about the structural form of the model

ÅUsually epistemic, not aleatory, uncertainty

ÅOften considerable in magnitude

ÅThe elephant in the middle of the room

http://www.elephant-pictures.info/nice-elephant-drawing.jpg



Uncertainty in probabilistic analyses

ÅParameters

ÅDistribution shape

ÅIntervariable dependence

ÅArithmetic expression

ÅLevel of abstraction

model 
uncertainty



Examples

ÅStructure

ÅSimplifications (aggregation, exclusion)

ÅLevel of detail (e.g., mesh resolution)

ÅBoundary conditions

ÅChoice of scenarios

ÅExtrapolations 

ÅConceptual model versus reality



General strategies

1. Sensitivity (what-if) analysis

2. Monte Carlo model averaging

3. Bayesian model averaging

4. Enveloping analyses



1.  Sensitivity (what-if) studies

ÅSimply re-computes the analysis with 

alternative assumptions

ÅKeeps track of all results and presents this 

array to the decision maker

ïIntergovernmental Panel on Climate Change



2. Monte Carlo model averaging

ÅIdentify all possible models

ÅTranslate model uncertainty into choices     

about distributions

ÅAverage probability distributions

ïEasy in Monte Carlo by selecting model randomly

ÅUse weights to account for different credibility       

(or assume equiprobability)



3. Bayesian model averaging

ÅSimilar to the Monte Carlo model averaging

ÅUpdates prior probabilities to get weights

ÅTakes account of available data 



Bayesian model averaging

ÅAssume itôs actually first model

ÅCompute probability distribution for f(A,B)

ÅRead off probability density of observed data

ïThatôs the likelihood for that model

ÅRepeat above steps for each model

ÅCompute posterior ́ prior ³likelihood

ïThis gives the Bayesôfactors

ÅUse the posteriors as weights for the mixture



4.  Enveloping probabilities

ÅTranslate model uncertainties to a choice 

among distributions

ÅEnvelope the cumulative distributions

ÅTreat resulting p-box as single object



Numerical example

The function f is one of two possibilities.  Either

f(A,B) = fPlus(A, B) = A + B

or

f(A,B) = fTimes(A, B) = A × B

is correct, but we donôt know which.  Suppose

A ~ normal(0, 1) 

B ~ normal(5, 1)

What can we say about  f(A, B) ?
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Monte Carlo model averaging

Same A and B

f  is either Plus or Times

but Plusis twice as likely as Times

prob(Plus) = 2/3, prob(Times) = 1/3
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Bayesian model averaging

Same A and B

f  either Plus or Times; Plus twice as likely

one observation  f(A,B) = 7.59



Likelihoods

fPlus(A,B) ~ A+B ~ normal(5, Õ2) LPlus(7.59) = 0.05273

fTimes(A,B) ~ A ³B ~ normal(0, Õ26) LTimes(7.59) = 0.02584

fTimes

fPlus
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R: dnorm(7.59,5,sqrt(2))

Excel: =NORMDIST(7.59, 5, SQRT(2), FALSE)

If we had multiple 

data, weôd multiply 

these likelihoods.



Weights

Posterior probabilities for the two models

posterior ́ prior³likelihood

Plus

0.6³0.05273/(0.6³0.05273+0.4³0.02584)=0.7538 

Times

0.4³0.02584/(0.6³0.05273+0.4³0.02584)=0.2462

These are the weights for the mixture distribution

normalization factor
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Sensitivity analysis

ÅSimple theory

ÅStraightforward to implement

ÅDoesnôt confuse aleatory and epistemic

ÅMust enumerate all possible models

ÅCombinatorial complexity

ÅHard to summarize



Drawbacks of what-if

ÅConsider a long-term model of the economy 
under global climate change stress

3 baseline weather trends
3 emission scenarios 
3 population models
3 mitigation plans

ÅCombinatorially complex as more model 
components are considered

ÅCumbersome to summarize results

81 analyses to compute, 

and to document



Monte Carlo modal averaging

ÅProduces single distribution as answer

ÅCan account for differential credibility

Å(Stochastic mixture)



Monte Carlo model averaging

ÅState of the art in probabilistic risk analysis

ïNuclear power plant assessments

ÅNeed to know what all the possibilities are

ÅIf donôt know the weights, assume equality



Drawbacks of Monte Carlo averaging

ÅIf you cannot enumerate the possible models, 

you canôt use this approach

ÅAverages together incompatible theories and 

yields an answer that no theory supports

ÅCan underestimate tail risks 



Bayesian model averaging

ÅProduces single distribution as answer

ÅCan account for differential prior credibility

ÅTakes account of available data

Must enumerate all possible models



Drawbacks of Bayesian averaging

ÅRequires priors and can be computationally 
challenging

ÅMust be able to enumerate the possible models

ÅAverages together incompatible theories and 
yields an answer that neither theory supports

ÅCan underestimate tail risks 



Bounding probability

ÅStraightforward theoretically

ÅYields single mathematical object as answer

ÅDoesnôt confuse aleatory and epistemic

ÅDoesnôt underestimate tail risks



Drawbacks of enveloping

ÅCannot account for different model credibilities

ÅCanôt make use of data

ÅDoesnôt account for óholesô

ïOptimality may be computationally expensive



Bayesian model averaging

ÅSimilar to the probabilistic mixture

ÅUpdates prior probabilities to get weights

ÅTakes account of available data 

(Draper 1995)



Bayesian model averaging

ÅAssume itôs actually the first model

ÅCompute probability distribution under that model

ÅRead off probability density of observed data

ïProduct if multiple data; its the likelihood for that model

ÅRepeat above steps for each model

ÅCompute posterior ́ prior ³likelihood

ÅUse the posteriors as weights for the mixture



Strategy for enumerable models

ÅWhat-if analysis isnôt feasible in big problems

ÅProbabilistic mixture is, at best, ad hoc

ÅFor abundant data, Bayesian approach is best

ÅOtherwise, itôs probably just wishful thinking

ÅBounding is reliable, although it may be wide



But can we use envelopes?

ÅYes, we can compute with them directly

ÅSeveral related approaches

ïDempster-Shafer evidence theory

ïProbability bounds analysis 

ïRobust Bayes methods

ïImprecise probabilities

ïothers



Special case:  distribution shape



Uncertainty about distribution shape

ÅCan we use normal distributions for everything?

ÅIs this distribution gamma, Weibull or 

lognormal?

ÅCould it be a Gumbel distribution?

ÅCould it be some unnameddistribution?

ÅSome analysts just try several distribution shapes 

but this is unsatisfactory because there are 

uncountably many possible shapes



P-boxes

ÅP-boxes were invented to address this issue

ÅCan define p-boxes by specifying constraints
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Ready solutions for many problems
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Maximum entropyôs problem

ÅDepends on the choice of scale

ÅA solution in terms of degradation rate is 
incompatible with one based on half life 
even though the information is equivalent

ÅP-boxes are the same whichever scale is used

Warner North interprets Ed Jaynes as saying that two states of 

information that are judged to be equivalent should lead to the same 

probability assignments .  Maxent doesn t do this!  But PBA does.



Probability bounds analysis

assuming

independence
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A+B under independence
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Donôt know the input distributions

ÅDonôt haveto specify the distributions

ÅShouldnôt use a distribution without evidence

ÅMaximum entropy criterion erases uncertainty 

rather than propagates it

ÅSensitivity analysis is very hard since itôs an 

infinite-dimensional problem

ÅP-boxes easy, but should use all information



Special case:  distribution shape



Uncertainty about dependence

ÅSensitivity analyses usually used

ïVary correlation coefficient between -1 and +1

ÅBut this underestimatesthe true uncertainty

ïExample: supposeX, Y~ uniform(0,24) but we donôt 

know the dependence between X and Y
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Unknown dependence
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Fréchet bounds

ÅIf X~F and Y~G, the distribution of  X+Y, is 

bounded by

and these bounds are pointwise best-possible.

Plus, theyôre simpler to compute than the distribution 

under independence, which involve integrals
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a = beta(12,21) * 10

b = N(5,1)

aa = minmaxmean(0,10,3) 

bb = N([4,6],1)

c = a + b

cc = aa + bb

clear;show a,aa; show b,bb in blue; show 

c,cc in red
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X,Y~ uniform(1,24)

No assumptions Uncorrelated

Linear correlation Positive dependence
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Uncertainty about dependence

ÅNeither sensitivity studies nor Monte Carlo 

simulation can comprehensively assess it

ÅBayesian model averaging canôt even begin

ÅOnly bounding strategies work

ÅFréchet bounding lets you be sure



Interpolations
(deterministic functions)



Constrained family of functions

ÅSometimes we have some information about 

a function

ÅFor example,

ïDeterministic

ïSome function points

ïMonotonicity
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Projects function uncertainty

ÅUncertainty about the function is propagated 

into the uncertainties about the Y-values

points Č intervals, and distributions Č p-boxes

X

Y



X

Y Sure values may be imprecise



Figure from Vincent Dubourg'sdissertation Adaptive surrogate models for reliability analysis and reliability-based design optimization

Kriging (GP regression)

http://tel.archives-ouvertes.fr/index.php?halsid=brh4sghpdnil4jo51skkqo0pe5&view_this_doc=tel-00697026&version=2


Kriging (Gaussian process regression)

ÅSideways Gaussians; ů varies at each point

ÅNot good for extrapolations, or if n is small

ÅAssumes thereôs a fixed function

ÅMeasured values may actually be recorded 

with error (imprecise Gaussian process)



ñNonparametricò

ÅThese constrained function families are 

nonparametric methods

ÅStill have assumptions (and model uncertainty)

ÅUncertainty attached to choice of kernel shape 

or smoothing function 



Regressions
(stochastic functions)



Regressions in risk analysis

ÅYou need variable Y from variable X, but 

X is a random variable.

ÅYou have a paper from the literature that 

gives a regression of Yon X.

ÅWhat do you do?



Hereôs one way

ÅRealize X, apply regression to get Y=a+bX

ÅThe distribution of Y is then a linear scaling 
of the distribution of X

ÅBut this ignores any uncertainty about the 
regression itself



The line neglects the scatter
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Hereôs another way

ÅRealize a, b and X from their distributions 
(a,b ~ normal), then get Y=a+bX

ÅThe distribution of Y is then a convolution 
of the distributions for a, b, and X

ÅBut this still understates the uncertainty 
about the regression
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Assumptions of regression

ÅNo error in the X value

ÅLinear in the mean, E(Y(X)) = a+ bX

ÅYi are independent and normal for any X

ÅHomoscedastic



Linear regression
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A third way

ÅRealize X

ÅRealize e~ normal(0, s)

ÅGet Y = a + bX + e

ÅThis just follows the regression model
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