gancier

~ The elephant in the living room:
What to do about model uncertainty

Scott FersonCentre de Recherches de Royallieu, Université de Technologie de Compie

6" International Workshop on Reliable Engineering Computing, Chicago, lllinois, 28 May .



Euclid

Given a line In a plane, how many parallel line
can be drawn through a point not on the line?

For over 20 centuri1 es



Relax one axiom

A Non-Euclidean geometries say the answer is
either zero or many

A Controversial, but eventually accepted

A Richer mathematics and broader application:



Current tumult in uncertainty theor

A Relaxing one axiom of decision theory yields .
notion-Lafpl@com@ano unc

A This uncertainty cannot be characterized by a
single probability distribution

A Will eventually be embraced as essential



Epistemic uncertainty

A Arises from incomplete knowledge

A Incertitude arises from
I limited sample size
I mensurational limits (measurement erroy
| use of surrogate data

A Reducible with empirical effort



Aleatory uncertainty

A Arises from natural stochasticity

A Variability arises from
| spatial variation
I temporal fluctuations
I manufacturing or individual differences

A Not reducible by empirical effort



Model uncertainty

A Doubt about the structural form of the model
A Usually epistemic, not aleatory, uncertainty
A Often considerable in magnitude

A The elephant in the middle of the room




Uncertainty in probabillistic analyse

A Parameters

A Distribution shape
A Intervariable dependence model

A Arithmetic expression uncertainty
A Level of abstraction
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Examples

A Structure

A Simplifications (aggregation, exclusion)
A Level of detail (e.g., mesh resolution)
A Boundary conditions

A Choice of scenarios

A Extrapolations

A Conceptual model versus reality



General strategies

. Sensitivity (whatif) analysis
. Monte Carlo model averaging
. Bayesian model averaging

. Enveloping analyses



1. Sensitivity (whatf) studies‘,’s
pee

A Simply recomputes the analysis with
alternativeassumptions

A Keeps track of all results and presents this
array to the decision maker



2. Monte Carlo model averagmg
NBG US%°

A Translate model uncertainty into choices
about distributions

A Identify all possible models

A Average probability distributions
I Easy in Monte Carlo by selecting model randoml

A Use weights to account for different credibilit
(or assume equiprobabillity)



3. Bayesian model averaging

A Similar to the Monte Carlo model averaging
A Updates prior probabilities to get weights

A Takes account of available data



Bayesian model averaging

A Assume i actually first model
A Compute probability distribution fdtA,B)

A Read off probability density of observed data
I T h & theélikelihood for that model

A Repeat above steps for each model

A Compute posterior prior? likelihood
I This gives the Bayé@factors
A Use the posteriors as weights for the mixture



4. Enveloping probabilities

A Translate model uncertainties to a choice
among distributions

A Envelope the cumulative distributions

A Treat resulting fox as single object



Numerical example

The functionf is one of two possibilities. Either

f(AB) =f., (A B) =A+B
or
f(AB) = frimed A, B) =AX B

| S correct
A~ normal(0, 1)
B ~ normal(5, 1)

What can we say abolifA, B) ?

, b ut we do
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Monte Carlo model averaging
SameA andB
f Is either Plus or Times

but Plusis twice as likely as Times

prob(Plus) = 2/3, prob(Times) = 1/3
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Bayesian model averaging
SameA andB

f either Plus or Times; Pluwice as likely

one observatiorf(A,B) = 7.59



Likelihoods
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for,{AB) ~A+B ~ normal(52)  Lp,{7.59) = 0.05273
fro{AB) ~A3 B~ normal(026) L,..{7.59) =0.02584



Welights

Posterior probabilities for the two models
posterior” prior3 likelihood

Plus
0.6 0.05273(0.68 0.052730.40.02584=0.7538

o
normallzatlon factor

Times
0.4° 0. 02584(0 63 0. 052730 £ Q. 02584 0.2462

These are the weights for the mixture distributic
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Cumulative probability
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Cumulative probability
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Sensitivity analysis

A Simple theory
A Straightforward to implement
A Doesrid confuse aleatory and epistemic

A Must enumerate all possible models
A Combinatorial complexity
A Hard to summarize




Drawbacks of whalf

A Consider a longerm model of the economy
under global climate change stress

3 baseline weather tren

3 emISSIOn scenarios 81 analyses to Compute,
3 population models and to document

3 mitigation plans

A Combinatorially complex as more model
components are considered

A Cumbersome to summarize results



Monte Carlo modal averaging

A Produces single distribution asswer
A Can account for differentiaredibility

A (Stochastic mixture)



Monte Carlo model averaging

A State of the art in probabilistic risk analysis
I Nuclear power plant assessments

A Need to know what all the possibilities are

Al f dondét know the we



Drawbacks of Monte Carlo averagir

A If you cannot enumerate the possible models
you canot use this a

A Averages together incompatible theories anc
yields an answer that no theory supports

A Can underestimate tail risks



Bayesian model averaging

A Produces single distribution as answer
A Can account for differential prior credibility

A Takes account of available data



Drawbacks of Bayesian averaging

A Requires priors and can be computationally
challenging

A Must be able to enumerate the possible mod

A Averages together incompatible theories anc
yields an answer that neither theory supports

A Can underestimate tail risks



Bounding probability

A Straightforward theoretically
A Yields single mathematical object as answer
A D o e sconfuse aleatory and epistemic

A Doesrii underestimate tail risks



Drawbacks of enveloping

A Cannot account for different model credibilitie
A C a nniake use of data

ADoesndccount for oOho
I Optimality may be computationally expensive



Bayesian model averaging
(Draper 1995)

A Similar to the probabilistic mixture
A Updates prior probabilities to get weights

A Takes account of available data



Bayesian model averaging

A Assume ifs actually the first model
A Compute probability distribution under that model

A Read off probability density of observed data
I Product if multiple data; is the likelihood for that model

A Repeat above steps for each model
A Compute posterior prior 2 likelihood
A Use the posteriors as weights for the mixture



Strategy for enumerable models

A Whatif analysis isi feasible in big problems
A Probabilistic mixture is, at bestd hoc

A For abundant data, Bayesian approach is be
A Otherwise, i& probably just wishful thinking

A Bounding is reliable, although it may be wide



But can we use envelopes?

A Yes, we can compute with theglirectly

A Several related approaches

I DempsterShafer evidence theory
I Probability bounds analysis

I Robust Bayes methods
|
|

" Imprecise probabilities
I others



Special case: distribution shape



Uncertainty about distribution shap

A Can we use normal distributions for everythin

A Is this distribution gamma, Weibull or
lognormal?

A Could it be a Gumbel distribution?
A Could it be som&nnamedlistribution?

A Some analysts just try several distribution she
but this Is unsatisfactory because there are
uncountably manv possible shapes



P-boxes

A P-boxes were invented to address this issue
A Can define ghoxes by specifying constraints
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min mean, sd max



o CDF-

Ready solutions for many problem:
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Comparingp-boxeswith maximum entropwyistributions
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Maxil mum entrop

A Depends on the choice of scale

A A solution in terms of degradation rate is
iIncompatible with one based on half life
even though the information is equivalent

A P-boxes are the same whichever scale is use



CDF

Probabllity bounds analysis

+
|

assuming
iIndependence

20 0 40 0 80



Cumulative

.él = al
g 8%
g 22 |
0 2 4 6 8 10 12 14 0 1 2 3 4 5
Value of random variable B Value of random variable A
A+B Al [1,3] Al [2,4] Al [3,5]
independence p,=1/3 P, = 1/3 p,=1/3
Bl [2,8] A+BI [3,11] A+BI [4,12] A+BI [5,13]
0, = 1/3 prob=1/9 prob=1/9 prob=1/9
Bi [6,10] A+BI [7,13] A+BI [8,14] A+BI [9,15]
g,=1/3 prob=1/9 prob=1/9 prob=1/9
Bi [8,12] A+BI [9,15] A+BI [10,16] A+BIl [11,17]
0z = 1/3 prob=1/9 prob=1/9 prob=1/9



A+B under independence
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Donot V-vﬂ"n e
A D o nhaveto specify the distributions
AShoul dndot use a di st

A Maximum entropy criterion erases uncertaint
rather than propagates it

ASensitivity anal ysi s
Infinite-dimensional problem

A P-boxes easy, but should use all information



Special case: distribution shape



Uncertainty about dependence

A Sensitivity analyses usually used
I Vary correlation coefficient betweerl and +1

ABut thisunderestimatethe true uncertainty

I Example: suppos¥, Y~ uni form(0, 2
know the dependence betweeandY



Varying the correlation coefficient
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Counterexample: outside the cone



Cumulative probability

=

o

Unknown dependence

I N B
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X+Y

X, Y~ uniform(0,24)
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Fréchet bounds

A If X~F andY~G, the distribution ofX+Y, is
bounded by

esupmax(F(x)+G(y) 1,0) inf mln(F(x)+G(y) 1)
Ee=xty a

and these bounds are pointwise fmstsible.
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Imprecise

\‘

Precise

Igjiii};

No assumptions

Linear correlation

Perfect

)

Particular dependence

0O 10 20 30 40 50
X+Y

Uncorrelated

y 4

Positive dependence

Opposite

0O 10 20 30 40 50
X+Y

X,Y~ uniform(1,24)



Uncertainty about depssqgience

&

< oIV

A Neither sensitivity studies nor Monte Carlo
simulation can comprehensively assess it

A Bayesian model averaging daeven begin
A Only bounding strategies work

A Fréchet bounding lets you be sure



Interpolations

(deterministic functions)



Constrained family of functions

A Sometimes we have some information about
a function

A For example,
I Deterministic
I Some function points
I Monotonicity






Projects function uncertainty

A Uncertainty about the function is propagated
Into the uncertainties about tivevalues

pointsC intervals, and distributionS p-boxes

Y




Sure values may be imprecise
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Kriging (GP regression)



http://tel.archives-ouvertes.fr/index.php?halsid=brh4sghpdnil4jo51skkqo0pe5&view_this_doc=tel-00697026&version=2

Kriging (Gaussian process regressic

ASi deways Gaussi ans;
A Not good for extrapolations, orrifis small
AAssumes thereds a fi

A Measured values may actually be recorded
with error (imprecise Gaussian process)



NNonpar amet r

A These constrained function families are
nonparametric methods

A Still have assumptions (and model uncertain

A Uncertainty attached to choice of kernel shay
or smoothing function



Regressions

(stochastic functions)



Regressions In risk analysis

A You need variabl from variableX, but
X 1S a random variable.

A You have a paper from the literature that
gives a regression &fon X.

A What do you do?



Heres one way

A RealizeX, apply regression to g¥ta+bX

A The distribution ofY is then a linear scaling
of the distribution oX

A But this ignores any uncertainty about the
regression itself
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The line neglects thecatter
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Here® another way

A Realizea, b andX from their distributions
(a,b ~ normal), then get=a+bX

A The distribution ofY is then a convolution
of the distributions foa, b, andX

A But this still understates the uncertainty
about the regression



Standard errors faxrandb
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Assumptions of regression

A No error in theX value
A Linear in the mean, (X)) =a + b X
AY; are independent and normal for afy

A Homoscedastic



Linear regression




A third way
A RealizeX
A Realizee ~ normal(0s)
AGetY=a+bX +e

A This just follows the regression model



Reconstructs the scatter

20

15

10



