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Abstract. In many engineering situations, we need to make decisions under uncertainty. In some
cases, we know the probabilities pi of different situations i; these probabilities should add up to 1.
In other cases, we only have expert estimates of the degree of possibility µi of different situations;
in accordance with the possibility theories, the largest of these degrees should be equal to 1.

In practice, we often only know these degrees pi and µi with uncertainty. Usually, we know the
upper bound and the lower bound on each of these values. In other words, instead of the exact
value of each degree, we only know the interval of its possible values, so we need to process such
interval-valued degrees.

Before we start processing, it is important to find out which values from these intervals are
actually possible. For example, if only have two alternatives, and the probability of the first one is
0.5, then – even if the original interval for the second probability is wide – the only possible value
of the second probability is 0.5.

Once the intervals are narrowed down to possible values, we need to compute the range of
possible values of the corresponding characteristics (mean, variance, conditional probabilities and
possibilities, etc.). For each such characteristic, first, we need to come up with an algorithm for
computing its range.

In many engineering applications, we have a large amount of data to process, and many relevant
decisions need to be made in real time. Because of this, it is important to make sure that the
algorithms for computing the desired ranges are as fast as possible.

We present expressions for narrowing interval-valued probabilities and possibilities and for
computing characteristics such as mean, conditional probabilities, and conditional possibilities.
A straightforward computation of these expressions would take time which is quadratic in the
number of inputs n. We show that in many cases, linear-time algorithms are possible – and that
no algorithm for computing these expressions can be faster than linear-time.

Keywords: interval-valued probabilities; interval-valued possibilities; interval computations; con-
straints.
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1. Introduction and Motivation

We use knowledge to make decisions. In many real-life situations, we need to make decisions.
For example, in a computer server, an intrusion detection system must decide whether a given
pattern of behavior represents a possible intrusion – and activate defenses against this intrusion.
In medicine, we need to decide on the best way to cure a patient. Each decision is based on our
knowledge about the situation.

Empirical knowledge vs. expert knowledge. This knowledge comes from two sources.
First, we have records of previous experiences. For example, in the case of intrusion detection,

we have records of someone hacking into a databases, as well as records of a normal functioning of a
system. In case of medicine, we have numerous records of different patients with different symptoms
and different confirmed diagnoses.

We also have knowledge of experts – which can also be used to make a good decision. For
example, an expert can say that a certain pattern of behavior – e.g., when several repeated logins
are attempted with different passwords – is a strong indication of an intrusion attempt. A skilled
medical doctor can decided that for a given patient, a particular type of cough most probably comes
from allergy and not from cold.

Let us describe how to represent and process both types of knowledge.

Empirical knowledge is usually represented in terms of probabilities. In most practical
situations, we rarely have all the information which is needed to make a decision; the available
information is usually incomplete. As a result, based on this partial information, we often cannot
make a definite conclusion about what is happening in the system. In the past, there may have
been many different situations similar to what we observe now, and their detailed analysis showed
that they have been caused by different phenomena. For example, repeated attempts to log in with
different passwords do not necessarily indicate an intrusion – they may come from a legitimate
absent-minded user who forgot which of his numerous passwords corresponds to which system and
is therefore trying them all.

In such cases, based on our prior experience, we cannot definitely tell what kind of phenomenon
we encounter, but we can say how frequently phenomena of different type were encountered in
similar past situations. For example, we may know that in situations with repeated logins, in 10%
of the cases it was absent-minded users, and in 90% of the cases, it was an intrusion attempt. In
other words, based on our prior experience, we know the probabilities of different phenomena. This
is all the information that we can immediately deduce from the past: if out of 10 patients with a
certain type of cough 7 had allergy and 3 had cold, then the only information that we have is that
for this type of cough, the probability of an allergy is 70% and the probability of cold is 30%.

Thus, a general way to describe empirical knowledge is by describing the corresponding proba-
bilities. (The case when we are absolute sure about the phenomenon can be viewed as a particular
case of this probabilistic description, when the correct diagnosis has probability 1 and all other
diagnoses have probability 0).

Need to process probabilities. How can we use the empirical probabilities when making a
decision? Because of the above uncertainty, for each possible decision a, we do not know the exact
consequences, at best, we know the probabilities p1(a), . . . , pn(a) of different outcomes. It has been
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shown (Fishburn, 1988; Luce and Raiffa, 1989; Raiffa, 1997; Nguyen et al., 2012) that consistent
preferences under such uncertainty can be described as follows:

− we assign certain numerical values u1, . . . , un to different possible outcomes, and then

− a decision a is better than a decision a′ if it has higher value of expected utility:

n∑
i=1

pi(a) · ui >
n∑

i=1

pi(a
′) · ui.

From this viewpoint, to compare different possible decisions, we need to be able to compute the
corresponding expected values.

To compute the expected value, we need to know the probabilities pi(a). For example, if an
intrusion detection system activates its defenses, it may lead to positive consequences – if this was
indeed an attack – or it may lead to negative consequence, such as an inconvenient denial of service
for a legitimate user. In other words, we need to know the probabilities of different phenomena
based on the given situation. In some cases, such probabilities can be determined directly from the
empirical records. In other cases, we do not have a direct record of such probabilities, so we must
deduce them from whatever information we have.

For example, in medical databases, we usually have records of patients with different diseases, so
what we have is probabilities p(cough | allergy) that a person has a cough if this person has allergy
or that the person has a cough under the condition that this person has cold. What we want is the
opposite probabilities, e.g., that a person has allergy if this person has a cough. A well-known way
to compute such probabilities is to use the Bayes rule; see, e.g., (Sheskin, 2011). The use of this

rule requires that we compute conditional probabilities p(A |B) =
P (A&B)

P (B)
.

How to represent expert knowledge? An expert is also rarely 100% sure. In some situations,
the expert can estimate the probabilities of different phenomena. However, often, an expert can
only provide partial information about these probabilities.

Case when expert knows relative probabilities. Often, an expert can only estimate relative
probabilities, i.e., an expert knows the ratios rij which are equal to the ratios pi/pj , but not the
actual values of the probabilities pi. For example, based on his or her experience, a medical doctor
knows that allergy occurs twice more frequently than cold, but he may not know the frequency
with which these diseases occur in a general population.

How can we represent this information? If we knew the probability pi0 > 0 of one of the phenom-
ena i0, we can then use the known ratios rii0 = pi/pi0 to uniquely determine all other probabilities
pi as pi = pi0 · rii0 . Let us therefore select one of the phenomena i0, take its “probability” to be

equal to some fixed positive value v > 0, and then use the formula µi
def
= v · rii0 to estimate the

expert’s degree of confidence in the i-th statement.
The most emphasis should be on the most probable phenomenon, the one with the largest

probability pm = max
1≤i≤n

pi, so it makes sense to take i0 = m. To simplify computations, let us select

the simplest possible positive number v. The simplest possible positive value is 1, so we take v = 1
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and thus, µi = rim. Since the value pm was the largest, we have µi = rim = pi/pm ≤ 1 for all i and
µm = rmm = pm/pm = 1. Thus, here, we have max

1≤i≤n
µi = 1. The values µ1, . . . , µn which satisfy this

constraint are known as possibilities; see, e.g. (Dubois, Lang, and Prade, 1998; Dubois and Prade,
1998; Dubois, Moral, and Prade, 1998).

How to determine conditional possibilities. As we have mentioned earlier, one of the impor-
tant procedures when processing probabilities is estimation of conditional probabilities. If instead
of the actual probabilities, we only know relative probabilities, i.e., the possibilities µi, how can we
then determine the conditional probabilities?

Suppose that for n different phenomena, we know the possibilities µ1, . . . , µn. This means that
the actual (unknown) probabilities have the form pi = c · µi, for some unknown value c = pm.
Suppose now that we learned that in reality, only phenomena from some set S ⊂ {1, . . . , n}. Then,
the corresponding conditional probabilities p(i |S) take the following form:

− for i ∈ S, we have p(i |S) = C · pi, where C =
1

p(S)
=

1∑
j∈S

pj
, and

− for i ̸∈ S, we have p(i |S) = 0.

Substituting pi = c · µi into this formula, we conclude that:

− for i ∈ S, we have p(i |S) = C · c · µi, and

− for i ̸∈ S, we have p(i |S) = 0.

We want to describe the corresponding relative possibilities µ(i |S) = c1 ·p(i |S), for some constant
c1. Substituting the above formula for p(i |S), we get the following formulas:

− for i ∈ S, we have µ(i |S) = c2 · µi, where c2
def
= c1 · C · c, and

− for i ̸∈ S, we get µ(i |S) = 0.

The value c2 can be determined from the requirement that the largest of the values µ(i |S) be
equal to 1, so we get (Dubois, Lang, and Prade, 1998; Dubois and Prade, 1998; Dubois, Moral, and
Prade, 1998):

µ(i |S) =


µi

max
j∈S

µj
if i ∈ S

0 if i /∈ S

(1)

Case when an expert only know the order between probabilities. In other cases, when
it comes to comparing rare events, an expert only knows the order between different probabilities:
for example, the doctor knows that allergy is more frequent than cold, but he or she is not sure
whether allergy is twice more frequent or three times more frequent.

An expert can still describe this knowledge in terms of numbers: e.g., by marking some values
of a scale – e.g., on a scale from 0 to 10. In this case, since the largest of these numerical values
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has no specific meaning, it also makes sense to make it equal to 0. The difference between this
case and the previous case if that since we do not know relative probabilities either, there is no
need to re-scale the smaller values here. So, to describe the expert’s knowledge in this case, we use
non-negative values µ1, . . . , µn for which max

i=1,...,n
µi = 1.

To distinguish this case from the case of relative probabilities, the corresponding possibilities µi

are sometimes called qualitative – while the possibilities corresponding to relative probabilities are
called quantitative.

How to determine conditional possibilities: qualitative case. In this case, we still want
to raise the largest possibility value to 1. However, in contrast to the quantitative case, where we
wanted to preserve the ratio between the possibility values, there is no such reason in the qualitative
case. So, to simplify computations, it makes sense to keep all the other values intact. Thus, we arrive
at the following definition of conditional possibility (Dubois, Lang, and Prade, 1998; Dubois and
Prade, 1998; Dubois, Moral, and Prade, 1998):

µ(i |S) =


1 if i ∈ S and µi = max

j∈S
µj

µi if i ∈ S and µi < max
j∈S

µj

0 otherwise

(2)

Probabilities and possibilities have indeed been successfully applied. Probabilities and
possibilities (both quantitative and qualitative) have been successfully applied in intrusion detection
– and in several other applications (Benferhat et al., 2012; Benferhat, da Costa Pereira, and
Tettamanzi, 2013; Ayachi, Ben Amor, and Benferhat, 2014; Ayachi, Ben Amor, and Benferhat,
2014a).

Probabilities and possibilities are often only known with interval uncertainty. In prac-
tice, we usually only know the probabilities pi and the possibilities µi with uncertainty. Often, we

only know the bounds on each of these values, i.e., we know the intervals
[
p
i
, pi

]
and

[
µ
i
, µi

]
of

their possible values.

It is important to take interval uncertainty into account. Because of the ubiquity of interval
uncertainty, we need to analyze how this uncertainty affects the results of computations involving
these values. In other words, we need to be able to compute the ranges of possible values of
conditional probabilities and possibilities, etc. This is the problem that we will analyze in this
paper.

In many applications, we have a large amount of data to process, and need for real-time decisions.
It is thus important to make the range-computing algorithms as fast as possible.

Need to “narrow” intervals: An important auxiliary problem. Before we start processing,
it is important to find out which values from the given intervals are actually possible. For example,

if n = 2 and p1 = 0.5, then – even if
[
p
2
, p2

]
= [0, 1] – the only possible value of p2 is 0.5. This is

another problem that we will analyze and solve in this paper; this is a problem that with which we
will start our analysis.
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2. Narrowing Intervals: An Important Auxiliary Problem

Narrowing intervals: a general formulation of the problem. Let us first formulate the prob-
lem of narrowing intervals in general terms. In general, we have a set of intervals [x1, x1], . . . , [xn, xn]
and a constraint g(x1, . . . , xn) = c.

In this paper, we consider two types of constraints:

− for probabilities, we consider constraints of the type
n∑

i=1
pi = 1, i.e., g(x1, . . . , xn) = x1+. . .+xn

and c = 1;

− for possibilities, we consider constraints of the type max(µ1, . . . , µn) = 1, i.e., g(x1, . . . , xn) =
max(x1, . . . , xn) and c = 1.

Sometimes, as we have mentioned, because of the constraints, not all values pi from the corre-
sponding intervals are actually possible. Our objective is to find the ranges of possible values. In
other words, for each i, we want to compute the “narrowed” interval [p−i , p

+
i ] defined as follows:

[p−i , p
+
i ]

def
=

{xi ∈ [xi, xi] : ∃x1 . . .∃xi−1∃xi+1 . . .∃xn(x1 ∈ [x1, x1] & . . . &xn ∈ [xn, xn] & g(x1, . . . , xn) = c)}.

Narrowing intervals: case of probabilities. Let us first consider the case of probabilities. In
this case, we have the following result.

Proposition 1. For probabilities, with constraint
n∑

i=1
pi = 1, the set of possible tuples (p1, . . . , pn)

is non-empty if and only if
n∑

i=1
p
i
≤ 1 ≤

n∑
i=1

pi. If this set is non-empty, then the i-th narrowed

interval has the form

[p−i , p
+
i ], where p−i

def
= max

p
i
, 1−

∑
j ̸=i

pj

 and p+i
def
= min

pi, 1−
∑
j ̸=i

p
j

 . (3)

Proof. If the set of possible tuples is non-empty, then, for each such tuple, by adding up n

inequalities p
i
≤ 1 ≤ pi and taking into account that

n∑
i=1

pi = 1, we get the desired inequality

n∑
i=1

p
i
≤ 1 ≤

n∑
i=1

pi. Vice versa, if this double inequality is satisfied, then this is set is non-empty:

indeed, the sum
n∑

i=1
pi attains values ≤ 1 and ≥ 1 on the box

[
p
1
, p1

]
× . . . ×

[
p
n
, pn

]
. Since the

sum is a continuous function, it thus attains the intermediate value 1 for some tuple.
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Let us now prove that when the intervals are consistent, the narrowed intervals have the desired
form. Let us first show that every possible value pi belongs to the interval (3). Indeed, for each i,
we have p

i
≤ pi and pi ≤ pi. Since the probabilities pi add up to 1, we have pi = 1−

∑
j ̸=i

pj . Thus,

pi ≥ 1 −
∑
j ̸=i

pj and pi ≤ 1 −
∑
j ̸=i

p
j
. By combining all these bounds on pi, we conclude that each

possible value pi belongs to the desired interval (3).
Let us prove that, vice versa, every value pi from the interval (3) is indeed possible. To prove

this, for each j ̸= i, we will take pj = p
j
+ α · (pj − p

j
), for an appropriate value α ∈ [0, 1]. Once

0 ≤ α ≤ 1, we thus have p
j
≤ pj ≤ pj , so to complete the proof, we need to find α from the

condition that the sum of all the probabilities add up to 1, i.e., that pi +
∑
j ̸=i

pj = 1. Substituting

our expression for pj into this formula, we conclude that

pi +
∑
j ̸=i

p
j
+ α ·

∑
j ̸=i

pj −
∑
j ̸=i

p
j

 = 1. (4)

For α = 0, the left-hand side of this equality is equal to pi +
∑
j ̸=i

p
j
. Since the value pi is within the

interval (3), we have pi ≤ p+i = min

(
pi, 1−

∑
j ̸=i

p
j

)
, thus pi ≤ 1−

∑
j ̸=i

p
j
and pi +

∑
j ̸=i

p
j
≤ 1. Thus,

for α = 0, the left-hand side of the formula (4) is smaller than or equal to 1.
For α = 1, the left-hand side of the formula (4) is equal to pi+

∑
j ̸=i

pj . Since the value pi is within

the interval (3), we have pi ≥ p−i = max

(
p
i
, 1−

∑
j ̸=i

pj

)
, thus pi ≥ 1 −

∑
j ̸=i

pj and pi +
∑
j ̸=i

pj ≥ 1.

Thus, for α = 1, the left-hand side of the formula (4) is greater than or equal to 1.
Since for α = 0 the linear expression in the left-hand side of (4) is ≤ 1 and for α = 1, this

expression is ≥ 1, there exists a value α for which this expression is equal to 1. For this value, the
corresponding probabilities pj are within the corresponding intervals and add up to 1 (i.e., satisfy
the constraint). The proposition is proven.

How to compute the narrowed interval: probabilistic case. Straightforward computation
of the formula (3) takes n steps for each of n narrowed intervals. Thus, in this case, it would take
n ·O(n) = O(n2) computational steps to compute all n narrowed intervals.

We can speed up these computations if we first compute if we take into account that the formulas
(3) can be described in the following equivalent form

[p−i , p
+
i ] =

[
max

(
p
i
, 1− P + pi

)
,min

(
pi, 1− P + p

i

)]
,

where P
def
=

n∑
i=1

p
i
and P

def
=

n∑
i=1

pi. By using these formulas, we can come up with the following

faster algorithm.
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Narrowed intervals in the probabilistic case: asymptotically optimal algorithm.

− First, we compute the sums P =
n∑

i=1
p
i
and P =

n∑
i=1

pi.

− Then, for each i, we compute the narrowed interval[
max

(
p
i
, 1− P + pi

)
,min

(
pi, 1− P + p

i

)]
.

Each of the two stages takes O(n) steps, so we compute all narrowed intervals in O(n) steps. This
algorithm is asymptotically optimal: we need to compute n intervals, therefore we cannot use fewer
than O(n) steps.

Narrowing intervals: case of possibilities. In the case of possibilities, we have n intervals[
µ
i
, µi

]
. We consider all possible tuples (µ1, . . . , µn) such that µi ∈

[
µ
i
, µi

]
and max

i
µi = 1.

Proposition 2. A sequence of possibility intervals
[
µ
i
, µi

]
⊆ [0, 1] is consistent if and only if

max
i

µi = 1. If this sequence is consistent, then the corresponding narrowed intervals have the

following form:

− if we have several intervals with µj = 1, then there is no narrowing:
[
µ−
i , µ

+
i

]
=
[
µ
i
, µi

]
for

each i;

− if there is only one interval with µj = 1, then for this interval,
[
µ−
j , µ

+
j

]
= [1, 1], while for all

other intervals i ̸= j, there is no narrowing:
[
µ−
i , µ

+
i

]
=
[
µ
i
, µi

]
.

Proof. We must have µi = 1 for some i, so, since µi ≤ µi ≤ 1, we must have µi = 1 for this i.
Thus, consistency implies that maxµi = 1. Vice versa, if max

i
µi = 1, this means that µi = 1 for

some i. For this i, we can then take µi = 1, and any other values from the corresponding intervals
for other j ̸= i. Thus, the condition max

i
µi = 1 is indeed equivalent to consistency.

If there is only one interval with µj = 1, this means that we have µi < 1 and thus, µi < 1 for
all other i. Since we need to have at least one value of possibility equal to 1, the j-th value should

always be equal to 1, so we have
[
µ−
j , µ

+
j

]
= [1, 1].

Let us prove that for every i, each value µi from the corresponding intervals
[
µ−
i , µ

+
i

]
are indeed

possible. If we have at least two intervals with µj = 1, then one of them is different from i, so we
can take µj = 1 for this j ̸= i, and µk = µk for all k ̸= i, j. One can easily check that these values

are within the corresponding intervals
[
µ
i
, µi

]
, and the maximum of these values is equal to 1.

If we have only one j for which µj = 1, then we take µj = 1 for this j, and µk = µk for all
k ̸= i, j. The proposition is proven.

REC 2014 - L. Gutierrez, M. Ceberio, V. Kreinovich, et al.



From Interval-Valued Probabilities to Interval-Valued Possibilities

3. The Main Problem: Interval Computation under Constraints

Interval computations: reminder. Since we are dealing with interval uncertainty, it is natural
to relate to interval computations (Jaulin et al., 2001; Moore, Kearfott, and Cloud, 2009) which
analyzes computations under this uncertainty. One of the main problems of interval computations
is as follows;

− we know an algorithm f(x1, . . . , xn);

− we know the intervals [x1, x1], . . . , [xn, xn];

− we want to compute the range {f(x1, . . . , xn) : x1 ∈ [x1, x1] & . . . &xn ∈ [xn, xn]}.

Interval computations under constraints: a general description. In our case, we have
additional constraints on values from the corresponding intervals: probabilities must add to one,
while the largest of the possibility values should be equal to one. The corresponding problems can
therefore be viewed as particular cases of the following general problem of interval computation
under constraints:

− we know algorithms f(x1, . . . , xn) and g(x1, . . . , xn), and we know a number c;

− we know the intervals [x1, x1], . . . , [xn, xn];

− we want to compute the range

{f(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn], and g(x1, . . . , xn) = c}.

An additional problem: are all combinations possible? Often, we estimate the values of
several characteristics y1 = f1(x1, . . . , xn), . . . , ym = fm(x1, . . . , xn). Interval computation under

constraints enable us to find the ranges
[
y
1
, y1

]
, . . . ,

[
y
m
, ym

]
of each of these characteristics.

A natural question is: are all combinations (y1, . . . , ym) of values yj ∈ [y
j
, yj ] possible? In other

words, can we find xi ∈ [xi, xi] for which g(x1, . . . , xn) = c and yj = fj(x1, . . . , xn) for all j?
If all combinations are possible, then the set S of all combinations (y1, . . . , ym) is equal to the
corresponding box:

S = B
def
=
[
y
1
, y1

]
× . . .×

[
y
m
, ym

]
.

Otherwise, the set S is a proper subset of the box B.

4. Conditional Probabilities qi
def
= p(i |S)

Formulation of the problem.

− we know the intervals
[
p
i
, pi

]
⊆ [0, 1]; we assume that these intervals have already been

narrowed (see above);

REC 2014 - L. Gutierrez, M. Ceberio, V. Kreinovich, et al.



L. Gutierrez, M. Ceberio, V. Kreinovich, et al.

− we know the condition S, i.e., a set S ⊂ {1, . . . , n};

− we want to find, for each i ∈ S, the range
[
q
i
, qi

]
of possible values of the conditional probability

qi =
pi∑

j∈S
pj

when pj ∈
[
p
j
, pj

]
and

n∑
j=1

pj = 1.

What if we ignore the constraint. If we ignore the constraint
n∑

i=1
pi = 1, then the corresponding

problem is easy to solve. Indeed, if we divide both the numerator and the denominator of the formula

for conditional probability by pi, we conclude that qi =
1

1 +
∑

j∈S, j ̸=i

pj
pi

. This expression is increasing

in pi and decreasing in all other values pj , j ̸= i. Thus, the smallest value of qi is attained when pi
is the smallest possible and each pj for j ̸= i is the largest possible. Similarly, the largest value of
qi is attained when pi is the largest possible and each pj for j ̸= i is the smallest possible. So, we

get the range

 p
i

p
i
+

∑
j∈S, j ̸=i

pj
,

pi
pi +

∑
j∈S, j ̸=i

p
j

.
If we take constraints into account, not all such values are possible. Let us take n = 10

and
[
p
i
, pi

]
= [0, 0.2] for all i. One can easily check that these intervals are already narrowed – in

the sense that applying the above narrowing operation to these intervals leaves them intact. Let

us take S = {1, . . . , 9}. Then, the above formula leads to the upper bound q1 =
p1

p1 +
∑
j ̸=1

p
j

=

0.2

0.2 + 0 + . . .+ 0
= 1. However, this value is only attained when p1 = 0.2 and p2 = . . . = p9 = 0.

In this case, however,
10∑
i=1

pi = 0.2 + 0 + . . .+ 0 + p10 ≤ 0.4, while this sum should be equal to 1.

It is therefore desirable to come up with bounds that take constraints into account.

Proposition 3. The range of possible values of the conditional probability is equal to

[1i, qi] =

 p
i

p
i
+min

( ∑
j∈S, j ̸=i

pj , 1−
∑
k/∈S

p
k
− p

i

) ,
pi

pi +max

( ∑
j∈S, j ̸=i

p
j
, 1−

∑
k/∈S

pk − pi

)
 .

Proof. We have already shown that

qi =
1

1 +

∑
j∈S, j ̸=i

pj

pi

,
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i.e., qi =
1

1 +
1

ri

, where ri
def
=

pi∑
j∈S, j ̸=i

pj
. Thus:

− the value qi is the smallest if and only if the ratio ri is the smallest and

− the value qi is the largest when the ratio ri is the largest.

From the fact that pj ∈
[
p
j
, pj

]
for every j, we conclude that p

i
≤ pi ≤ pi, that∑

j∈S, j ̸=i

p
j
≤

∑
j∈S, j ̸=i

pj ≤
∑

j∈S, j ̸=i

pj ,

and
∑
k/∈S

p
k
≤
∑
k/∈S

pj ≤
∑
k/∈S

pk. Since pi +
∑

j∈S, j ̸=i

pj +
∑
k/∈S

pk = 1, thus
∑

j∈S, j ̸=i

pj = 1 −
∑
k/∈S

pk − pi,

and the inequalities for
∑
k/∈S

pk imply that

1−
∑
k/∈S

pk − pi ≤
∑

j∈S, j ̸=i

pj ≤ 1−
∑
k/∈S

p
k
− pi.

For each value pi ∈ [p
i
, pi], the ratio ri is the smallest when the sum

∑
j∈S, j ̸=i

pj is the largest. This

sum is bounded from above by two bounds:
∑

j∈S, j ̸=i

pj and 1−
∑
k/∈S

p
k
− pi. Thus,

∑
j∈S, j ̸=i

pj ≤ min

 ∑
j∈S, j ̸=i

pj , 1−
∑
k/∈S

p
k
− pi

 .

So, for a fixed value pi, the largest possible value of the sum
∑

j∈S, j ̸=i

pj is equal to

∑
j∈S, j ̸=i

pj = min

 ∑
j∈S, j ̸=i

pj , 1−
∑
k/∈S

p
k
− pi

 .

Thus, the smallest possible value of the ratio ri is equal ro

pi

min

( ∑
j∈S, j ̸=i

pj , 1−
∑
k/∈S

p
k
− pi

) .

As pi increases, the numerator of this fraction increases and the denominator decreases, so the
fraction itself increases. Thus, the smallest possible value ri of the ratio ri is attained when pi
attains its smallest possible value p

i
. Substituting this smallest value

ri =
p
i

min

( ∑
j∈S, j ̸=i

pj , 1−
∑
k/∈S

p
k
− p

i

)
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into the formula describing qi in terms of ri, and multiplying both the numerator and the denomi-
nator of the resulting formula by p

i
, we get the desired expression for q

i
.

Similarly, we get the formula for qi. The proposition is proven.

Computing conditional probabilities: asymptotically optimal algorithm. Straightforward
computations would require quadratic time: linear time for each of n values q

i
and qi. However, we

can compute these value in asymptotically optimal linear time if we reformulate the above formulas
in the equivalent form

[
q
i
, qi

]
=

 p
i

p
i
+min

(
PS − pi, 1− P−S − p

i

) , pi

pi +max
(
PS − p

i
, 1− P−S − pi

)
 ,

where we denoted PS
def
=
∑
j∈S

pj , PS
def
=
∑
j∈S

p
j
, P−S

def
=
∑
k/∈S

pk, and P−S
def
=
∑
k/∈S

p
k
.

Not all combinations of possible conditional probabilities are possible. Let us consider

the case when n = 8,
[
p
i
, pi

]
= [0.1, 0.15] for all i, and S = {1, 2, 3, 4}. In this case, it is possible

to have q1 =
1

3
=

0.15

0.15 + 0.1 + 0.1 + 0.1
: indeed, we can take p1 = 0.15, p2 = p3 = p4 = 0.1,

p5 = p6 = p7 = 0.15, and p8 = 0.1. It is also possible to have q1 =
2

11
=

0.1

0.1 + 0.15 + 0.15 + 0.15
:

indeed, we can take p1 = 0.1, p2 = p3 = p4 = 0.15, p5 = p6 = p7 = 0.1, and p8 = 0.15.

Similarly, we can have q1 =
1

3
as a possible value of q1, q2 =

1

3
as a possible value of q2, q3 =

2

11

as a possible value of q3, and q4 =
2

11
as a possible value of q4. However, as we will prove, there

are no values pi for which qi =
pi

p1 + p2 + p3 + p4
for all i = 1, 2, 3, 4. Indeed, due to monotonicity,

the only way to have q1 =
1

3
is to have p1 = 0.15 and p2 = p3 = p4 = 0.1. However, q2 =

1

3
is only

possible for p1 = 0.1 – a contradiction.

5. Quantitative Conditional Possibility: Interval Case

Formulation of the problem.

− we know n intervals
[
µ
i
, µi

]
; we assume that these intervals have already been narrowed (see

above);

− we know the condition S, i.e., a set S ⊂ {1, . . . , n};

− we want to find, for each i ∈ S, the range
[
q
i
, qi

]
of possible values of the quantitative

conditional possibility qi =
µi

max
j∈S

µj
when µj ∈

[
µ
j
, µj

]
and max

1≤j≤n
µj = 1.
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Proposition 4.

− If the set S contains all the indices i for which µi = 1, then q
i
= µ

i
and qi = µi for all i ∈ S.

− In all other cases, q
i
=

µ
i

max

(
µ
i
, max
j∈S, j ̸=i

µj

) and qi =
µi

max

(
µi, max

j∈S, j ̸=i
µ
j

) .

Proof. Each tuple of possibility values µi has to satisfy the constraint max
i

µi = 1. So, for each

tuple, there must be an index i for which µi. Since µi ≤ µi = 1, this implies that µi = 1. So, if
all indices i with µi = 1 are contained in the set S, this means that for every tuple of possibility
values, we have µi = 1 for some i ∈ S. In this case, max

i∈S
µi = 1 and therefore, formula (1) reduces

to qi = µ(i |S) = µi. Thus, in this case, the range of possible value of qi coincides with the range
of possible values of µi.

Let us now consider the case when there is at least one index k /∈ S for which µk = 1. Whether
the inequality µi < max

j∈S, j ̸=i
µj is satisfied or not, the expression for the conditional possibility

qi (non-strictly) increases with µi and decreases with µj for j ∈ S, j ̸= i. Thus, each value qi is
larger than or equal to the value corresponding to the smallest possible value of µi and to the largest
possible values of µj , and similarly, each value qi is smaller than or equal to the value corresponding
to the largest possible value of µi and to the smallest possible values of µj :

µ
i

max

(
µ
i
, max
j∈S, j ̸=i

µj

) ≤ qi =
µi

max
j∈S

µj
≤ µi

max

(
µi, max

j∈S, j ̸=i
µ
j

) .

Hence, each possible value of qi indeed belongs to the above interval.
To complete the proof, we thus need to show that each value from the above interval can be

represented as qi =
µi

max
j∈S

µj
for an appropriate tuple µi. The value

µ
i

max

(
µ
i
, max
j∈S, j ̸=i

µj

) can be

obtained if we take µi = µ
i
and µj = µj for all j ̸= i. Since this includes the value k for which

µk = 1, we thus get µk = 1 and max
j

µj = 1.

The value
µi

max

(
µi, max

j∈S, j ̸=i
µ
j

) can be obtained if we take µi = µi, µj = µ
j
for all j ∈ S, j ̸= i,

and µk = µk for k ̸∈ S. Since this includes the value k for which µk = 1, we thus get µk = 1 and
max

j
µj = 1.

The expression for the conditional possibility pi is a continuous function of the values µj , and its

domain

{
(µ1, . . . , µn) : max

i
µi = 1

}
is a connected set. Thus, the range

[
q
i
, qi

]
of this function on

this domain is a connected set and hence, with any two points it contains all the points in between.
Therefore, all the values qi from the above interval are indeed possible values of the i-th conditional
possibility. The proposition is proven.
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How to compute quantitative conditional possibilities under interval uncertainty: anal-
ysis of the problem. The above formula provide a straightforward algorithm for computing q

i
and qi. For each index i, this algorithm takes O(n) steps, to compute the corresponding maxima.
So, the overall computation time of this algorithm is n ·O(n) = O(n2).

How can we compute these bounds faster? The possibility of faster computations comes from
the fact that if we denote by M the largest of the values µj when j ∈ S, and by S the second
largest of these values, then:

− if µi = M , we have max
j∈S, j ̸=i

µj = S;

− otherwise, if µi < M , then we have max
j∈S, j ̸=i

µj = M .

Thus, we arrive at the following algorithm.

How to compute quantitative conditional possibilities under interval uncertainty: asymp-
totically optimal algorithm.

− If the set S contains all indices i for which µi = 1, then we return the values q
i
= µ

i
and

qi = µi for all i ∈ S.

− Otherwise, we compute the largest M and the second largest S of the values µj corresponding

to j ∈ S = {j1, . . . , jm}. For that, for every k = 2, . . . ,m, we compute the largest Mk and the
second largest Sk of the values µi1 , . . . , µik

as follows:

• we start with M2 = max
(
µi1 , µi2

)
and S2 = min

(
µi1 , µi2

)
;

• then, once we know Mk−1 and Sk−1, we compute the next values Mk and Sk as follows:

∗ if µik
≥ Mk−1, we take Mk = µik

and Sk = Mk−1;

∗ if Sk−1 < µik
< Mk−1, we take Mk = Mk−1 and Sk = µik

;

∗ finally, if µik
≤ Sk−1, then the values do not change: Mk = Mk−1 and Sk = Sk−1.

We then take M = Mn and S = Sn.

− We also compute the largest M and the second largest S of the values µ
j
corresponding to

j ∈ S = {j1, . . . , jm}. For that, for every k = 2, . . . ,m, we compute the largest Mk and the
second largest Sk of the values µ

i1
, . . . , µ

ik
as follows:

• we start with M2 = max
(
µ
i1
, µ

i2

)
and S2 = min

(
µ
i1
, µ

i2

)
;

• then, once we know Mk−1 and Sk−1, we compute the next values Mk and Sk as follows:

∗ if µ
ik

≥ Mk−1, we take Mk = µ
ik

and Sk = Mk−1;

∗ if Sk−1 < µ
ik

< Mk−1, we take Mk = Mk−1 and Sk = µ
ik
;

∗ finally, if µ
ik

≤ Sk−1, then the values do not change: Mk = Mk−1 and Sk = Sk−1.
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We then take M = Mn and S = Sn.

− For each i ∈ S, we compute q
i
as follows:

• if µi = M , then we take q
i
=

µ
i

max
(
µ
i
, S
) ;

• if µi < M , then we take q
i
=

µ
i

max
(
µ
i
,M
) .

− After that, for each i ∈ S, we compute qi as follows:

• if µ
i
= M , then we take qi =

µi

max (µi, S)
;

• if µ
i
< M , then we take qi =

µi

max (µi,M)
.

This algorithm is linear time O(n) and is, thus, asymptotically optimal – since we need to handle
at least n input intervals.

Not all combinations of possible values µs(x) with max
x

µs(x) = 1 are possible: example.

Let us take n = 4, S = {1, 2, 3},
[
µ
1
, µ1

]
= [0.1, 0.2],

[
µ
2
, µ2

]
= [0.1, 0.5],

[
µ
3
, µ3

]
= [0.1, 0.5], and[

µ
4
, µ4

]
= [1, 1]. Then, the above formulas lead to

[
q
1
, q1

]
=

[
0.1

0.5
, 1

]
= [0.2, 1],

[
q
2
, q2

]
= [0.2, 1],

and
[
q
3
, q3

]
= [0.2, 1].

Let us prove that some combinations of the possible values qi ∈
[
q
1
, q1

]
are not possible. We

will prove this for q1 = 0.5, q2 = 0.2, and q3 = 1.0. We need to prove that it is possible to have the

values µi ∈
[
µ
i
, µi

]
for which qi =

µi

max
j=1,2,3

µj
. Indeed, since µ2 ≥ 0.1 and max (µ1, µ2, µ3) ≤ 0.5, we

have q2 =
µ2

max (µ1, µ2, µ3)
≤ 0.1

0.5
= 0.2, and the only possibility to have q2 = 0.2 is when µ2 = 0.1

and max (µ1, µ2, µ3) = 0.5. In this case, since µ1 ≤ 0.2, we have q1 =
µ1

max (µ1, µ2, µ3)
≤ 0.2

0.5
= 0.4,

which contradicts to the fact that µ1 = 0.5. The statement is proven.

6. Qualitative Conditional Possibility: Interval Case

Formulation of the problem.

− we know n intervals
[
µ
i
, µi

]
; we assume that these intervals have already been narrowed (see

above);
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− we know the condition S, i.e., a set S ⊂ {1, . . . , n};

− we want to find, for each i ∈ S, the smallest q
i
and the largest qi of possible values of the

qualitative conditional possibility (2) when µj ∈
[
µ
j
, µj

]
and max

1≤j≤n
µj = 1.

Proposition 5.

− If the set S contains all the intervals for which µi = 1, then q
j
= µ

j
and qj = µj for all j.

− Otherwise, if there is at least one interval k /∈ S with µi = 1, then for every i ∈ S, we have the
following:

• If µ
i
≥ max

j∈S, j ̸=i
µj, then

[
q
i
, qi

]
= [1, 1].

• Else, if µi ≥ max
j∈S

µ
j
, then q

i
= µ

i
and qi = 1.

• Otherwise, q
i
= µ

i
and qi = µi.

Proof. In the possibility tuple, one of the values µi must be equal to 1. For this value i, we have
µi = 1. Thus, if the set S contains all all indices i for which µi = 1, the value µi = 1 will always
occur for some i ∈ S. In this case, formula (2) leads to qi = µi, and thus, the smallest and largest
values of qi coincide with the smallest and largest values of µi.

If we have µk = 1 for some k /∈ S, then we can always satisfy the condition max
j

µj = 1 by taking

µk = 1 and not affecting the values µi for i ∈ S. Let us consider this case.
According to the definition (2) of qualitative conditional possibility qi, the qualitative conditional

possibility value qi is equal either to the original possibility value µi or to 1, and the only case when
this value is equal to 1 is when µi is the largest of all values µj corresponding to j ∈ S.

Let us first consider the case when µ
i
≥ max

j∈S, j ̸=i
µj . In this case, we have µ

i
≥ µj for all j ̸= i.

Thus, µi ≥ µ
i
≥ µj ≥ µj , so for all possible tuples, we have µi ≥ µj for all j ̸= i. Thus, the i-th

possibility value is always the largest and hence, we always get qi = 1.
Let us now consider the case when µ

i
< max

j∈S, j ̸=i
µj and µi ≥ max

j∈S
µ
j
and let us show that in this

case, both values qi = µ
i
and qi = 1 are possible.

− To get the value qi = µ
i
, we take µi = µ

i
and µj = µj for all other j ∈ S. Since µ

i
< max

j∈S, j ̸=i
µj ,

the i-th possibility value is not the largest and therefore, qi = µi = µ
i
.

− To get the value qi = 1, we take µi = µi and µj = µ
j
for all remaining j ∈ S. Since µi ≥ max

j∈S
µ
j
,

the i-th possibility value is the largest and therefore, qi = 1.

Finally, let us consider the remaining case when µ
i
< max

j∈S, j ̸=i
µj and µi < max

j∈S
µ
j
. In this case,

the i-th possibility value cannot be the largest – otherwise from µi ≥ µj we would conclude that
µi ≥ µ

j
for all j ̸= i, and thus, that µi ≥ max

j∈S
µ
j
– which contradicts to the second of the starting
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inequalities. Since the i-th value is not the largest, we always have qi = µi. Thus, the largest value
of qi is µi and the smallest value of qi is µi

. The proposition is proven.

How to compute qualitative conditional possibilities under interval uncertainty: anal-
ysis of the problem. The above formula provide a straightforward algorithm for computing q

i
and qi. For each index i, this algorithm takes O(n) steps, to compute the corresponding maxima.
So, the overall computation time of this algorithm is n ·O(n) = O(n2).

To make this algorithm faster, we can use the same ideas that we use for quantitative conditional
possibility.

How to compute qualitative conditional possibilities under interval uncertainty: asymp-
totically optimal algorithm.

− If the set S contains all indices i for which µi = 1, then we return the values q
i
= µ

i
and

qi = µi for all i ∈ S.

− Otherwise, we compute the maximum M of all the values µ
i
, i ∈ S.

− Then, we compute the largest M and the second largest S of the values µi corresponding to
i ∈ S; this can be done as in the algorithm for the quantitative case.

− After that, for each i ∈ S, we do the following:

• if µi = M and µ
i
≥ S, we return q

i
= qi = 1;

• if µi < M and µ
i
≥ M , we return q

i
= qi = 1;

• otherwise, if µi ≥ M , we return q
i
= µ

i
and qi = 1;

• for all other i ∈ S, we return q
i
= µ

i
and qi = µi.

This algorithm takes linear time O(n), and is, therefore, asymptotically optimal – since we need to
least c · n computational steps to process all n input intervals.

Not all intermediate values are possible. In contrast to the quantitative case when all values
qi between q

i
and qi are possible, here many intermediate values are not possible. For example,

when n = 3, S = {1, 2},
[
µ
1
, µ1

]
=
[
µ
1
, µ1

]
= [0, 0.5] and

[
µ
3
, µ3

]
= [1, 1], then we have q

1
= 0

and q1 = 1, but it is not possible to have qi = 0.6 ∈ [0, 1], since each value qi coincides either with
1, or with one of the original values µi.

7. Mean under Interval Uncertainty

As we have mentioned, to make a decision, we need to be able to estimate the expected value
under interval uncertainty. In precise terms, we want to find the range

[
E,E

]
of the mean E =
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n∑
i=1

pi ·xi when pi ∈
[
p
i
, pi

]
and

n∑
i=1

pi = 1. The maximum is attained when larger values have larger

probability. So, if we sort xi in increasing order x1 ≤ x2 ≤ . . . ≤ xn, we get

E =
k−1∑
i=1

p
i
· xi + pk · xk +

n∑
i=k+1

pi · xi.

Here, pk = 1−
k−1∑
i=1

p
i
−

n∑
i=k+1

pi, so p
k
≤ pk ≤ pk implies that

k∑
i=1

p
i
+

n∑
i=k+1

pi ≤ 1 ≤
k−1∑
i=1

p
i
+

n∑
i=k

pi.

This inequality enables us to find k in linear time.
Since sorting requires time O(n · log(n)) (Cormen et al., 2009), we get total time O(n · log(n)).

Comment. A similar algorithm can compute the lower bound E.
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